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The "current-tube" method is used to solve the problem of numerical simulation of a 
steady-state axially symmetrical relativistic electron beam in a drift tube with finite ex- 
ternal magnetic field. The geometry of the problem and an algorithm for solution were pre- 
sented in [i]. With the assumption of an infinite external longitudinal magnetic field [i] 
simulated a relativistic electron beam, for which case purely longitudinal motion and insig- 
nificance of the effect of the intrinsic magnetic field B i are characteristic. In a finite 
external magnetic field B i beam motion is determined by three velocity components and con- 
sideration of the effect of all components of B e on the beam is required. Moreover, the rela- 
tionships between the components of B i and the character of their distributions is of impor- 
tance in analyzing the external beam structure. 

The mathematical model consists of the system of Maxwell's equations and the equations 
of motion of the relativistic electrons in a vacuum: 

V~rp = -- ~ap,  Er Oq~ Ez  -- aq~ AO 4.~ . = - - a - F '  - - - - ~ f '  V2A~ ~ c ]o, 
r 

OAo l a rBto 4~ B ~ =  I o rAo, ( 1 )  
Bir = - - - ~ - a - - r - - O - f  = "7 " ]z '  r Or 

dp e E § e _ [p, B] V/(i ~22/C2)1/2~ 
W = ~-~ ,~o c" (~ + p2/~D~/~ ' P = - -  

with zero boundary conditions 

q), AO Iz=o,L = O; ~ ,  Ao [r=R ---- O; ae? OAo [ 
or" 7r 1~o= 0, ( 2 )  

w h e r e  B = B e + B i ;  B e = (0  0 ,  D e ) ;  B i = (B i ,  B i B~) 

The values of current density and space charge required to complete system (i):, (2) are 
calculated by the "current-tube" method. The fact that Eq. (i) does not explicitly contain 
the radial current component Jr is a consequence of the axial symmetry of the problem and the 
method chosen for its solution (the "current-tube" method). A solution constructed in this 
manner will automatically satisfy the equation divj = 0, and this relationship was used to 
monitor the correctness of the calculation. 

In contrast to [i], the charge ~ is concentrated in a volume V~ limited by cylindri- 
cal surfaces with radii �9 ~ -_~+1 {r~+l, ~+1~ ~ ~+1 r ----- m m  [ r h - 1 ,  rh-1] ,  r ---- m a x  r~+~{ and  p l a n e s  z ----- zh ,  z = z k . 

The components of the current density j~ and Jz are calculated with the expression Jxij = 

�9 V ~ . . vt+1~/2~: ~j; x = e z" w:~ is the corresponding component of 0ijvxij, where vx i j  = ~ _ ~ V [ ~ i j ( u ~  + xh 71 . . . . . .  

the velocity vij. 

As in [I], for solution of system (i), (2), we use the method of space charge relaxation 
in the volume 

AhCP ~+t : - - 4 U p  s, p ~  = O)s? s + l  @ ( t  - -  os)bos , s : O, 1 ,  2 . . . . .  (3 )  

where 5 h is a difference analog of the Laplace operator; a~ s is the sequence of relaxation 

parameters; $s+~ is the density of the space charge reconstructed in each cell of the grid 
~0hL by the method of "smearing" ~ver areas for q0 = ~s+~ To accelerate the convergence of 
the iteration process and so that for input currents I+ greater than a limiting value the beam 
will more rapidly take on the well-known "glass" form, in the first approximation we take 
~s = 0.3, after which the value of ~s is decreased rapidly to 0.01. 
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Calculations were performed for various values of input current I+ and B~, with a drift 

tube radius R = 4.6 cm, and an electron beam injected with uniform current density and initial 

radius r b = 2 cm; For sublimiting current values for the given geometry, I§ = 7 kA and B~ = 
3 kG, the iteration process converges in six iterations for u s = i. For an input current 

e = 3.5 kG tube lengths of above the limiting value (I+ = 20 kA) the problem was solved for B z 
20 and 30 cm, and input beam kinetic energy W+ = 1 MeV. At B~ = 5 hG, L = 20 cm the itera- 
tion process Eq. (3) is established at 27 iterations, after which the current at the drift 
tube output oscillates within the limits 6.7 kA ~ I_ ~ 7.1 kA. With decrease in external 
magnetic field (B e = 3 kG) the instability of the problem intensifies, and at L = 30 cm itera- 

tion process (3) ~oes not converge, and large oscillations in output current I occur. At L = 
20 cm the iteration process also does not converge, although the amplitude of ~_ oscillations 
decreases, which may be explained by an insignificant increase in limit current. 

With the given input parameters one of the causes of instability of the iteration process 
(3) is the monoenergetic nature of the input beam, which leads to the appearance of singu- 
larities in the function p(r, z) in the virtual cathode region. In connection with this, even 
insignificant changes in density pS cause large oscillations in I_, i.e., the problem becomes 
unstable (incorrect, by Tikhonov's definition -- the third correctness condition is violated 
[2]). The singularity in the function p(r, z) can obviously be smoothed if we specify an 

I+ distribution function over longitudinal or transverse velocities. 

For example, let a distribution function over longitudinal velocity be specified. We 

divide I+ inton energy groups such that f+=~ ~i[+ , where ~i are weights determined by the 

energy distribution ~i=l " Now at each point of the plane z = 0, which is the initial 

coordinate of the current tube, there will be emitted not one, but n tubes with current ~iI~ 
(I~ is the current in tube k) and with 6i = Vzi/C, correspondin~ to energy group i. In this 
case the virtual cathode region expands and the gradient of the function p(r, z) decreases, 

causing a reduction in the order of its singularity. 

To produce a more realistic approximation of the beam structure and to illustrate the 
above points, an electron beam was modeled for B~ = 3 kG, L = 30 cm with a close to real en- 
ergy spread, not exceeding 10% of W+, with the following parameters: ~ = 0.03, ~ = 0.15, 
~3 = 0.32, ~ = 0.5, ~l = 0.914, B2 = 0.927, ~3 = 0.942, B~ = 0.945, v r, v 0 = 0. As an ini- 
tial approximation for iteration process (3) the results of a calculation without considera- 

tion of the I+ distribution over longitudinal velocity were chosen. Convergence of Eq. (3) 

was then achieved in 15 iterations, with an output current I_ ~ 8.5 kA. 

Results of solving Eqs. (i), (2) for an input current I+ = 20 kA are presented in Figs. 
1-5. Figure 1 shows a graph of ~ for B~ = 3 kG (solid lines) and 5 kG (dashed lines). For 

B~ = 3 kG Figs 2-4 show graphs of B~ B~ z �9 , Bz" It is evident from Figs. 1-4 that the quan- 

tity ~ and the B~ components reach extremal values in the virtual cathode region, with the 
highest value ~ ~ 1.4 kG, B ~ ~ 0.35 kG. The character of the change in intrinsic magnetic 
components shows that the ef#ect of B i on the relativistic electron beam is most significant 
in the virtual cathode region, while beyond the virtual cathode its effect, is insignificant 
in practice. The azimuthal component of the intrinsic magnetic field B~ proves to have a 
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significant focusing effect on the beam, especially at the entrance to the drift space, 
where E r = 0. This is shown in Fig. 5, where characteristic trajectories of "current tubes" 
are shown: Near the injection plane the trajectories are directed toward the axis of sym- 

l e metry. The longitudinal component Bz,has a sign opposite that of Bz, which increases the 
cyclotron radius of the electrons. Figure 5 also shows that due to formation of a virtual 
cathode a portion of the trajectories return to the plane z = 0. The mean values of output 
current I_ obtained by calculation agree with the experimental measurements of [3]. 

It follows from the calculations performed that in numerical simulation of a steady- 
state relativistic electron beam at input currents above the limit value in metallic drift 
tubes at B~ ~ 5 kG calculations with monoenergetic input beams can be recommended, while 
in the opposite case to insure stability of the iteration process (3) it is necessary to use 
an energetic or angular distribution of the input current. 
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